377 research outputs found

    Fast-SSC-Flip Decoding of Polar Codes

    Full text link
    Polar codes are widely considered as one of the most exciting recent discoveries in channel coding. For short to moderate block lengths, their error-correction performance under list decoding can outperform that of other modern error-correcting codes. However, high-speed list-based decoders with moderate complexity are challenging to implement. Successive-cancellation (SC)-flip decoding was shown to be capable of a competitive error-correction performance compared to that of list decoding with a small list size, at a fraction of the complexity, but suffers from a variable execution time and a higher worst-case latency. In this work, we show how to modify the state-of-the-art high-speed SC decoding algorithm to incorporate the SC-flip ideas. The algorithmic improvements are presented as well as average execution-time results tailored to a hardware implementation. The results show that the proposed fast-SSC-flip algorithm has a decoding speed close to an order of magnitude better than the previous works while retaining a comparable error-correction performance.Comment: 5 pages, 3 figures, appeared at IEEE Wireless Commun. and Netw. Conf. (WCNC) 201

    Faulty Successive Cancellation Decoding of Polar Codes for the Binary Erasure Channel

    Full text link
    We study faulty successive cancellation decoding of polar codes for the binary erasure channel. To this end, we introduce a simple erasure-based fault model and we show that, under this model, polarization does not happen, meaning that fully reliable communication is not possible at any rate. Moreover, we provide numerical results for the frame erasure rate and bit erasure rate and we study an unequal error protection scheme that can significantly improve the performance of the faulty successive cancellation decoder with negligible overhead.Comment: As presented at ISITA 201

    Faulty Successive Cancellation Decoding of Polar Codes for the Binary Erasure Channel

    Full text link
    In this paper, faulty successive cancellation decoding of polar codes for the binary erasure channel is studied. To this end, a simple erasure-based fault model is introduced to represent errors in the decoder and it is shown that, under this model, polarization does not happen, meaning that fully reliable communication is not possible at any rate. Furthermore, a lower bound on the frame error rate of polar codes under faulty SC decoding is provided, which is then used, along with a well-known upper bound, in order to choose a blocklength that minimizes the erasure probability under faulty decoding. Finally, an unequal error protection scheme that can re-enable asymptotically erasure-free transmission at a small rate loss and by protecting only a constant fraction of the decoder is proposed. The same scheme is also shown to significantly improve the finite-length performance of the faulty successive cancellation decoder by protecting as little as 1.5% of the decoder.Comment: Accepted for publications in the IEEE Transactions on Communication

    MIMO Transmission with Residual Transmit-RF Impairments

    Full text link
    Physical transceiver implementations for multiple-input multiple-output (MIMO) wireless communication systems suffer from transmit-RF (Tx-RF) impairments. In this paper, we study the effect on channel capacity and error-rate performance of residual Tx-RF impairments that defy proper compensation. In particular, we demonstrate that such residual distortions severely degrade the performance of (near-)optimum MIMO detection algorithms. To mitigate this performance loss, we propose an efficient algorithm, which is based on an i.i.d. Gaussian model for the distortion caused by these impairments. In order to validate this model, we provide measurement results based on a 4-stream Tx-RF chain implementation for MIMO orthogonal frequency-division multiplexing (OFDM).Comment: to be presented at the International ITG Workshop on Smart Antennas - WSA 201

    Comparison of Polar Decoders with Existing Low-Density Parity-Check and Turbo Decoders

    Full text link
    Polar codes are a recently proposed family of provably capacity-achieving error-correction codes that received a lot of attention. While their theoretical properties render them interesting, their practicality compared to other types of codes has not been thoroughly studied. Towards this end, in this paper, we perform a comparison of polar decoders against LDPC and Turbo decoders that are used in existing communications standards. More specifically, we compare both the error-correction performance and the hardware efficiency of the corresponding hardware implementations. This comparison enables us to identify applications where polar codes are superior to existing error-correction coding solutions as well as to determine the most promising research direction in terms of the hardware implementation of polar decoders.Comment: Fixes small mistakes from the paper to appear in the proceedings of IEEE WCNC 2017. Results were presented in the "Polar Coding in Wireless Communications: Theory and Implementation" Worksho

    Blind Detection of Polar Codes

    Full text link
    Polar codes were recently chosen to protect the control channel information in the next-generation mobile communication standard (5G) defined by the 3GPP. As a result, receivers will have to implement blind detection of polar coded frames in order to keep complexity, latency, and power consumption tractable. As a newly proposed class of block codes, the problem of polar-code blind detection has received very little attention. In this work, we propose a low-complexity blind-detection algorithm for polar-encoded frames. We base this algorithm on a novel detection metric with update rules that leverage the a priori knowledge of the frozen-bit locations, exploiting the inherent structures that these locations impose on a polar-encoded block of data. We show that the proposed detection metric allows to clearly distinguish polar-encoded frames from other types of data by considering the cumulative distribution functions of the detection metric, and the receiver operating characteristic. The presented results are tailored to the 5G standardization effort discussions, i.e., we consider a short low-rate polar code concatenated with a CRC.Comment: 6 pages, 8 figures, to appear at the IEEE Int. Workshop on Signal Process. Syst. (SiPS) 201

    Feedback-Aware Precoding for Millimeter Wave Massive MIMO Systems

    Full text link
    Millimeter wave (mmWave) communication is a promising solution for coping with the ever-increasing mobile data traffic because of its large bandwidth. To enable a sufficient link margin, a large antenna array employing directional beamforming, which is enabled by the availability of channel state information at the transmitter (CSIT), is required. However, CSIT acquisition for mmWave channels introduces a huge feedback overhead due to the typically large number of transmit and receive antennas. Leveraging properties of mmWave channels, this paper proposes a precoding strategy which enables a flexible adjustment of the feedback overhead. In particular, the optimal unconstrained precoder is approximated by selecting a variable number of elements from a basis that is constructed as a function of the transmitter array response, where the number of selected basis elements can be chosen according to the feedback constraint. Simulation results show that the proposed precoding scheme can provide a near-optimal solution if a higher feedback overhead can be afforded. For a low overhead, it can still provide a good approximation of the optimal precoder.Comment: 7 pages, 5 figures, to appear at the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 201

    Sliding Window Spectrum Sensing for Full-Duplex Cognitive Radios with Low Access-Latency

    Full text link
    In a cognitive radio system the failure of secondary user (SU) transceivers to promptly vacate the channel can introduce significant access-latency for primary or high-priority users (PU). In conventional cognitive radio systems, the backoff latency is exacerbated by frame structures that only allow sensing at periodic intervals. Concurrent transmission and sensing using self-interference suppression has been suggested to improve the performance of cognitive radio systems, allowing decisions to be taken at multiple points within the frame. In this paper, we extend this approach by proposing a sliding-window full-duplex model allowing decisions to be taken on a sample-by-sample basis. We also derive the access-latency for both the existing and the proposed schemes. Our results show that the access-latency of the sliding scheme is decreased by a factor of 2.6 compared to the existing slotted full-duplex scheme and by a factor of approximately 16 compared to a half-duplex cognitive radio system. Moreover, the proposed scheme is significantly more resilient to the destructive effects of residual self-interference compared to previous approaches.Comment: Published in IEEE VTC Spring 2016, Nanjing, Chin
    • …
    corecore